skip to main content


Search for: All records

Creators/Authors contains: "Ren, Xianglin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In the era of escalating climate change, understanding human impacts on marine heatwaves (MHWs) becomes essential. This study harnesses climate model historical and single forcing simulations to delve into the individual roles of anthropogenic greenhouse gases (GHGs) and aerosols in shaping the characteristics of global MHWs over the past several decades. The results suggest that GHG variations lead to longer-lasting, more frequent, and intense MHWs. In contrast, anthropogenic aerosols markedly curb the intensity and growth of MHWs. Further analysis of the sea surface temperature (SST) probability distribution reveals that anthropogenic GHGs and aerosols have opposing effects on the tails of the SST probability distribution, causing the tails to expand and contract, respectively. Climate extremes such as MHWs are accordingly promoted and reduced. Our study underscores the significant impacts of anthropogenic GHGs and aerosols on MHWs, which go far beyond the customary concept that these anthropogenic forcings modulate climate extremes by shifting global SST probabilities via modifying the mean-state SST.

     
    more » « less
    Free, publicly-accessible full text available January 16, 2025
  2. Abstract

    The Pacific Decadal Oscillation has been suggested to play an important role in driving marine heatwaves in the Northeast Pacific during recent decades. Here we combine observations and climate model simulations to show that marine heatwaves became longer, stronger and more frequent off the Northeast Pacific coast under a positive Pacific Decadal Oscillation scenario, unlike what is found during a negative Pacific Decadal Oscillation scenario. This primarily results from the different mean-state sea surface temperatures between the two Pacific Decadal Oscillation phases. Compared to the cool (negative) phase of the Pacific Decadal Oscillation, warmer coastal sea surface temperatures occur during the positive Pacific Decadal Oscillation phase due to reduced coastal cold upwelling and increased net downward surface heat flux. Model results show that, relative to the background anthropogenic global warming, the positive Pacific Decadal Oscillation in the period 2013–2022 prolongs marine heatwaves duration by up to 43% and acts to increase marine heatwaves annual frequency by up to 32% off the Northeast Pacific coast.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024